Biot-JKD model: Simulation of 1D transient poroelastic waves with fractional derivatives

نویسندگان

  • Emilie Blanc
  • Guillaume Chiavassa
  • Bruno Lombard
چکیده

A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce order 1/2 shifted fractional derivatives involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Thanks to the dispersion relation, the coefficients in the diffusive representation are obtained by performing an optimization procedure in the frequency range of interest. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solutions show the efficiency and the accuracy of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach

A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients intro...

متن کامل

A time-domain numerical modeling of two-dimensional wave propagation in porous media with frequency-dependent dynamic permeability.

An explicit finite-difference scheme is presented for solving the two-dimensional Biot equations of poroelasticity across the full range of frequencies. The key difficulty is to discretize the Johnson-Koplik-Dashen (JKD) model which describes the viscous dissipations in the pores. Indeed, the time-domain version of Biot-JKD model involves order 1/2 fractional derivatives which amount to a time ...

متن کامل

Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.

A temporal model based on the Biot theory is developed to describe the transient ultrasonic propagation in porous media with elastic structure, in which the viscous exchange between fluid and structure are described by fractional derivatives. The fast and slow waves obey a fractional wave equation in the time domain. The solution of Biot's equations in time depends on the Green functions of eac...

متن کامل

A Poroelastic-Viscoelastic Limit for Modeling Brain Biomechanics

The brain, a mixture of neural and glia cells, vasculature, and cerebrospinal fluid (CSF), is one of the most complex organs in the human body. To understand brain responses to traumatic injuries and diseases of the central nervous system it is necessary to develop accurate mathematical models and corresponding computer simulations which can predict brain biomechanics and help design better dia...

متن کامل

Spectral-element simulations of wave propagation in porous media

S U M M A R Y We present a derivation of the equations describing wave propagation in porous media based upon an averaging technique which accommodates the transition from the microscopic to the macroscopic scale. We demonstrate that the governing macroscopic equations determined by Biot remain valid for media with gradients in porosity. In such media, the well-known expression for the change i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 237  شماره 

صفحات  -

تاریخ انتشار 2013